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While the transfusion-transmission (TT) risk associated with the major transfusion-relevant viruses such as HIV
is now very low, during the last 20 years there has been a growing awareness of the threat to blood safety from
emerging infectious diseases, a number of which are known to be, or are potentially, transfusion transmissible.
Two published models for estimating the transfusion-transmission risk from EIDs, referred to as the
Biggerstaff-Petersen model and the European Upfront Risk Assessment Tool (EUFRAT), respectively, have been
applied to several EIDs in outbreak situations. We describe and compare the methodological principles of both
models, highlighting their similarities and differences. We also discuss the appropriateness of comparing results
from the two models. Quantitating the TT risk of EIDs can inform decisions about risk mitigation strategies and
their cost-effectiveness. Finally, we present a qualitative risk assessment for Zika virus (ZIKV), an EID agent
that has caused several outbreaks since 2007. In the latest and largest ever outbreak, several probable cases of
transfusion-transmission ZIKV have been reported, indicating that it is transfusion-transmissible and therefore
a risk to blood safety. We discuss why quantitative modeling the TT risk of ZIKV is currently problematic.
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Blood supplies internationally are as safe as they have ever been [1].
In most developed countries, the transfusion–transmission (TT) residu-
al risks (RRs) for the major transfusion-relevant viruses, hepatitis B
virus (HBV), human immunodeficiency virus types 1 and 2 (HIV-1/2)
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and hepatitis C virus (HCV) have been reduced to very low probabilities
[2,3]. This has been achieved by a combination of community education,
non-remunerated voluntary blood donations, pre-donation donor ques-
tionnaires designed to elicit risk behaviors, universal donor screening,
pathogen inactivation procedures incorporated into the production of
plasma-derived products and the availability of pathogen reduction
technologies for fresh blood components [2,4-7]. Additionally, most
countries perform serological screening for Treponema pallidum (syphi-
lis) [8], while a number also screen for antibodies to human T-cell
lymphotropic virus types 1 and 2 (anti-HTLV-1/2) [9,10] and bacterial
contamination of platelet components [11].

However, over the last 20 years there has been an increasing aware-
ness of the threat to blood safety fromemerging infectious disease (EID)
agents [12-21]. In this review we provide an overview of how EID
agents can be defined, when they represent a potential risk to blood
safety and how they differ from the classical transfusion-relevant
agents. We then describe and compare the methodological principles
and limitations of two models that have been developed and applied
to estimate the TT risk of EID agents. Finally, we use Zika virus (ZIKV)
as a contemporary case study for assessing the risk of an EID agent to
blood safety.

Defining Emerging Infectious Diseases – and Why We Can Expect
More Outbreaks

A widely accepted definition of EIDs are “those whose incidence in
humanshas increasedwithin the past 2 decades or threatens to increase
in thenear future” [17,22]. This is, perhaps necessarily, an imprecise def-
initionwhich does not specify the level of past or ‘threatened’ incidence
increase and does not differentiate true increases in incidence from ap-
parent increases due to greater awareness. Additionally, it does not take
into account geographical variation whereby an EID agent may be
emerging in one region but established in another [23], and the period
of 2 decades is somewhat arbitrary. Therefore, in the absence of a pre-
cise and universally applicable definition, “emerging” could be applied
to infectious diseases on a regional basis taking into account local
epidemiology.

Causative agents of EIDs include new or previously undetected
agents, aswell as known agents that are re-emerging following a period
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Fig. 1. Why we can expect
of low incidence or those for which a disease association has not been
previously recognized [17,24,25]. An important class of novel EIDs in
humans are zoonotic infections [17,24,26-29], driven in part by the in-
creased human demand for meat and animal products [28]. Once an
agent has crossed the species barrier to humans, subsequent transmis-
sion may be enhanced by a number of factors, predominately related
to human activity (Fig. 1).

While EIDs are not a new phenomenon, the frequency of reported
outbreaks has increased in the last 20 years and experts predict that
this will continue [17,18,21,26,28-30]. To emphasize this point, the list
of 21st century outbreaks already includes, in addition to ongoing out-
breaks of West Nile virus (WNV) [31,32], severe acute respiratory syn-
drome corona virus (SARS-CoV) in China in 2002–3 [33,34], the re-
emergence of avian influenza virus H5N1 (A(H5N1) [35], chikungunya
virus (CHIKV) on LaReunion island in 2005–07 followed by theWestern
Pacific region in 2012 and the Americas in 2013 [36-39], influenza A
virus H1N1 ((A(H1N1)) [40], Middle East respiratory syndrome corona
virus (MERS-CoV) in 2012 in the Middle East [41], influenza A virus
H7N9 (A(H7N9)) in 2013 in China [42], ZIKV on Yap Is in 2007, the
Western Pacific region in 2014 and the Americas in 2015–16 [43] and
Ebola virus (EBOV) in West Africa in 2014–15 [44].

From a blood safety perspective, a number of EID agents are known
to be, or are potentially, transfusion-transmissible based on the follow-
ing criteria [17,20,28]:

• able to establish infection in humans and spread within
populations

• infection includes an asymptomatic blood phase
• able to survive during blood processing and storage
• transmissible by the intravenous route
• associated with a clinically apparent disease in at least a propor-
tion of recipients.

The Major Transfusion-Relevant Viruses and EID Agents: What are
the Differences?

EID agents are typically less well characterized than the major
transfusion-relevant viruses noted above, either because they are
newly identified or have been known for some time but not considered
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a research priority. Therefore EID outbreaks are typically difficult to pre-
dict and risk assessments often have a high degree of uncertainty.While
the major transfusion-relevant viruses are transmitted human-to-
human without vectors or host reservoirs and have an endemic world-
wide distribution, a number of EID agents known to be transfusion-
transmissible, including dengue virus (DENV), West Nile virus (WNV),
Plasmodium spp. and Trypanosoma cruzi, are primarily vector-borne
and have a defined geographical distribution [19]. Due to the focus on
themajor transfusion-relevant viruses in the 1980s and 1990s, sensitive
and specific assays for universal donor screening have been developed
and implemented in most countries, and TT risks can be estimated by
risk models [45-49]. In contrast, donor screening is not possible for
most EID agents as suitable assays have only been developed and ap-
proved for a limited number of agents, including WNV [23,50,51],
T. cruzi [52], hepatitis A virus (HAV), human parvovirus B19 (primate
erythroparvovirus 1) [53-55], DENV [56,57] and Plasmodium spp. [58].
Moreover, even when a suitable assay is available for an EID agent, uni-
versal donor screening is not always implemented as itmay not beman-
dated or considered a proportionate response to the perceived level of
risk, or not feasible due to inadequate resources.

Emerging Infectious Disease Agents and Transfusion-Transmission
Risk Modeling

Estimating the TT risk of pathogens can be an important part of over-
all risk assessments. While risk estimates necessarily include a measure
of uncertainty, they nonetheless provide an indication of the risk level
which in turn can be used to informdecisions about the implementation
of risk mitigation strategies.

For the classical transfusion-relevant viruses for which universal
screening has been implemented, estimating TT risk is well established
usingmodels based on two key parameters, the incidence of infection in
the donor population (which is known due to universal donor screen-
ing) and the infectious window period (the period during which an
acutely infected donor may be infectious but not detectable by the
screening assay) [59-67]. However, modeling based on incident-
window period methodology is not applicable to EID agents for which
donor screening has not been implemented as the incidence of infection
in the donor population is not known and an assaywindowperiod is not
applicable. Therefore, alternative risk models have been developed
which included estimating the EID incidence in the blood donor popula-
tion based on the observable (i.e. reported) incidence in the general
population.

TheBiggerstaff-PetersenModel: TheRisk of Asymptomatic Infection
in Blood Donors

The first published model for estimating the TT risk of an EID agent
was developed by Biggerstaff and Petersen [68,69] (BP model) in re-
sponse to WNV outbreaks in the US, first reported in Queens, New
York city in 1999 [23,70]. WNV is a mosquito-borne flavivirus and TT
has been well documented. [23,70-80]. Prior to the implementation of
donor screening for WNV in 2003 [23], Biggerstaff and Petersen retro-
spectively estimated the TT risk of WNV during the outbreak in Queens
in 1999 [68] and, subsequently, other regions of the US [69].

The BP model used the reported incidence of WNV neurologic dis-
ease (WNND) to derive an estimate of the incidence of asymptomatic
infection in the general population which in turn was used to estimate
the proportion of donors who were asymptomatic and viraemic. Based
on a number of assumptions (Table 1), the estimated proportion of
asymptomatic viraemic donors was equated to the risk of an infected do-
nation entering the blood supply, which in turn was interpreted as the TT
risk.Development of the BPmodel included both a statistical resampling
method (Monte Carlo simulation) for estimating the proportion of the
population who were asymptomatically viraemic at any point in time,
and a formula for estimating the average proportion of asymptomatic
viraemic donors over a specified time period. More recently, Shang
et al. have developed a “hybrid” approach to the BP model, combining
the statistical resampling and formula methodologies [81].

Description of the Biggerstaff-Petersen Model

To perform statistical resampling, the required input variables based
on the local outbreak data were the:

• number of reported cases ofWNND (meningoencephalitis) for the
period of observation

• dates of symptom onset for each reported case, and
• population of the outbreak area.

In addition, a number of variables derived from published historical
data were also required:

• time course of WNV viraemia
• ratio of WNND cases to total number of WNV infections, and
• ratio of asymptomatic/symptomatic infections.

Based on the symptomonset dates for the reportedWNNDcases, the
statistical resampling simulated the number of symptomatic viraemic
cases at time t based on the range of possible viraemic periods prior
and subsequent to symptomonset. Further, based on the size of the gen-
eral population, the ratio of totalWNV infections/reportedWNND cases
and the assumption that infected donors who develop symptoms are
only at risk of donating prior to symptom onset, the model derived a
risk curve that represented the estimated proportion of asymptomatic
cases in the population which was equated to the TT risk of WNV.

The authors also developed a methodologically simpler formula to
estimate the averageWNVTT risk for a specified time periodwhich pro-
vided comparable estimates and has subsequently been applied in a
number of published studies (Table 2).

The BP formula can be conceptually expressed as

Average risk ¼ Dasym

T
�R�Ip

Where Dasym is the mean duration of asymptomatic viraemia, taking
into account that the asymptomatic viraemic period in the proportion of
cases that do not develop clinical symptoms is the entire viraemic peri-
od, and for the proportion that develop clinical symptoms it is only the
pre-symptomatic viraemic period, T is the period of observation, R is the
ratio of total infections/reported cases and Ip is the population incidence
of reported (ie, symptomatic) infections.

As the first term represents the risk of each infected donor present-
ing to donate while asymptomatic and viraemic, and the product of the
second and third terms represents the incidence of all infections (those
that develop symptoms and those that remain asymptomatic), the
above formula can be expressed as

Average risk ¼ Pr collecting viraemic donation
from each asympomatitically infected donor

� ��
incidence of infectionð Þ

Therefore, the BP formula for average risk is an estimate of the risk of
collecting an infectious donation from an asymptomatically infected donor
during the period of observation.

Applications of the Biggerstaff-Petersen Model

Since its original application to WNV outbreaks in the US, the BP
model has been used to estimate the TT risk of DENV in Australia during
outbreaks in 2004 and 2008 to 2009 [57,82], CHIKV on LaReunion island
in 2005–07 [83], Thailand in 2009 [84] and Italy in 2007 [85], hepatitis A
virus (HAV) in Latvia in 2008 [86] and Ross River virus (RRV) in
Australia in 2013–14 [87,88] (Table 3). In most of these studies the BP
formula for average risk for a defined time period was used rather



Table 1
Assumptions and limitations of the Biggerstaff-Petersen and EUFRAT models

Assumptions common to both models Additional assumptions for the BP model Additional assumptions for EUFRAT

Assumptions
related to
reported case
numbers

• Reported incident infections represent
all symptomatic infections

• Symptom onset dates for reported
(symptomatic) cases are similar to
asymptomatic infections

Assumptions
related to
blood donor

characteristics • Donation frequency is constant
throughout the period of observation

• All donors have the same risk of infection,
which is constant, during the period of
observation

• Asymptomatic infection does not affect the
donation behavior of donors

• Likelihood of detection of infectious donors by
the pre-donation questionnaire is constant
throughout the infectious period

• Donors have the same risk of infection as the
general population.

• Blood components from viraemic blood
donors transmit infection with 100% efficiency

• Donors with symptomatic infections would
either not present to donate or would be
excluded from donating

Assumptions
related to
infection

• Historically estimated asymptomatic/symptomatic
infection ratio and viraemic periods are applicable to
the study population and remain constant during
period of observation

• Relative timing and duration of viraemia is
independent of symptom onset time

• Duration of viraemia is the same for both
symptomatic and asymptomatic cases

• Risk from traveling donors is based on the
duration of visit to outbreak/endemic area
and time from departure to donating.

• Traveling donors have the same risk of
infection as local inhabitants in
outbreak/endemic area.

• The proportion of donors that develop
chronic infections is constant during
period of observation.

Limitations
• Input parameters required for both models
are often not well defined and contribute to
the inherent uncertainty of the models.

• To perform the statistical resampling in
the BP model, the dates of symptom onset
for reported incident cases are required.

• The BP model does not take into account the
reduction in TT risk related to efficiency of
transmission by transfusion, pathogen
reduction/inactivation due to blood processing
and storage, and recipient immunity.

• A number of parameters in the EUFRAT model,
including the difference in risk of infection
between donors and the general population,
the proportion of symptomatic cases in the
general population that do not seek health
care or are misdiagnosed, the TT efficiency of
infected end products and the level of
immunity in the general population,
are typically unknown for EID agents.
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than the statistical resampling approach. Presumably this is due, at least in
part, to the former being computationally simpler and not requiring the
exact dates of symptom onset for reported cases. These studies show
that the BPmodel can be applied to a range of EID agents and demonstrate
that regular risk modeling across regions can provide an indicator of
changing risk levels over time and geographically, thereby informing deci-
sions regarding the implementation of risk mitigation strategies.
Table 2
Applications of the Biggerstaff-Petersen model for estimating transfusion-transmission risk

Pathogen Country (date of outbreak) Formula/resampling1 Com

Chikungunya virus
(CHIKV)

La Reunion Island
(2005–2007)

Formula • P
• E
• R
• E
• In
o

Dengue virus (DENV) Australia (2004) Formula • ri
Dengue virus (DENV) Australia (2008–2009) Formula • M

• E
se

• A
d

Chikungunya virus
(CHIKV)

Italy (2007) Resampling • R
re

Hepatitis A virus (HAV) Latvia (2008) Formula • M
p

• M
• A
h

• D
co

Chikungunya virus
(CHIKV)

Thailand (2009) Formula • M
th

Ross River virus (RRV) Australia (2004) Formula • D
Ross River virus (RRV) Australia (2013–14) Formula • D

• D

1. Refer to text for details.
The EUFRAT: The Risk of Transmitting Infection

The European Centre for Disease Prevention and Control (ECDC) has
also developed amodel for estimating the TT risk of EID agents, referred
to as the European Up-Front Risk Assessment Tool (EUFRAT)) [89,90].
The EUFRAT has a web-based interface, the stated aims of which are
to assess and quantify the TT risk of an EID during an ongoing outbreak.
ments Reference

roportion of asymptomatic infections based on local seroprevalence data
stimate of symptomatic cases accounts for cases who did not consult a GP
isk estimates did not take into account uncertainty of key parameters
stimates of CHIKV viraemic periods based on DENV
cidence based on clinical definition which may be an
verestimate due to misdiagnosis of cases not due to CHIKV

[83]

sk modeling used to monitor changes in risk over time [82]
ean donation frequency used to estimate number of infectious donations
stimated proportion of asymptomatic infections based on the
roprevalence data in outbreak area
ssumed donors who became symptomatic within a few days after
onating would notify the blood service and donation would be discarded

[57]

isk contribution for donors in the 2-day presymptomatic period was
garded as negligible and therefore excluded from modeling

[85]

odel incorporated seroprevalence (immunity level) in general Latvian
opulation who were assumed to be immune
odeling restricted to individuals N18 years (blood donor eligibility)
ccounted for ALT testing of donors and deferral if levels are
igh (N90 IU/L)
id not take into account exclusion of donors who have a history of
ntact with HAV-infected individuals

[86]

odeled risk estimate of asymptomatic viraemic donors was higher
an indicated by donor screening

[84]

uration of RRV viraemia in humans based on mouse model [87]
emonstrated changing risk levels geographically and over time
uration of RRV viraemia in humans based on mouse model

[88]



Table 3
Applications of the EUFRAT model

Pathogen Country (date of outbreak) Comments Reference

Chikungunya virus (CHIKV) Italy (2007) Applied both Biggerstaff-Petersen and
EUFRAT models and calculations were performed:

• using both weekly and average cumulative notified cases
• using fixed input data and variable distribution values;
estimated risk of asymptomatic viraemic infection
in donors was very similar by both methods

[89]

Dengue virus (DENV) Dutch donors returning form
Suriname and Dutch
Caribbean (2011–11)

Estimated the risk of traveling donors:

• becoming infected while in outbreak area
• transmitting infection to recipients upon return

[91]

Chikungunya virus (CHIKV),
Coxiella burnetti (Q fever)

Italy (2007),
Netherlands (2007–09)

Extension of EUFRAT. Modeled risk of infection:

• prior to time of observation
• potential risk subsequent to time of observation.

[92]

Coxiella burnetti (Q fever) Netherlands (2007–09) • Risk modeling for an infection with acute and chronic phases
• Compared probability of donor being infected as
estimated by EUFRAT and Biggerstaff-Petersen models.

[93]

Ross River virus (RRV) Australia (2013–14) • Applied both EUFRAT and Biggerstaff-Petersen models
• Demonstrated temporal and geographical variations in risk.

[88]
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In this sectionwedescribe the conceptual basis of the EUFRAT and its re-
ported applications, and then provide a comparative analysis with the
BP model.
Conceptual Basis of the EUFRAT

The EUFRAT considers the risk of transmitting an EID agent to a re-
cipient as a series of risks that begin with the risk of blood donors be-
coming infected. Depending upon how the input variables are
grouped, methodologically the EUFRAT can be divided into a logical se-
quence of four [90] or five [89] steps, eachwith an associated risk. In our
description of the EUFRAT we will consider it as a 4-step process as
outlined in the EUFRAT User Manual [90].

The first step estimates the risk of a donor being infectious at the time
of donationwhich is assumed to be proportional to the prevalence of in-
fection in the general population. This risk is a function of the length of
the infectious period and includes correction factors for the difference
between the risk of donors becoming infected compared to the general
population (if known) and the proportion of undetected cases. For do-
nors who have returned from an outbreak area, the risk of infection
will be proportional to the infection incidence in the outbreak area
and the duration of the visit, while the risk of an infected donor remain-
ing infectious until the timeof donationwill be inversely proportional to
the duration of the period from leaving the outbreak area to time of
donating.

The second step estimates the number of donations derived from in-
fectious donors and incorporates the prevalence of infection in the
donor population (from step 1), the mean donation frequency and the
probability that an infected donor will be interdicted by a pre-
donation assessment procedure.

The third step estimates the number of infected donations released
for processing into blood components and infected end products based
on pathogen removal or inactivation due to the blood processing proce-
dures and, if implemented, the effectiveness of donor screening and
pathogen reduction technology.

The final step is an estimate of the risk of recipients becoming infected
following transfusion which will depend on the TT efficiency of the
agent and the proportion of recipients who are immune to the agent.
Additionally, the EUFRAT has the option for defining input parameters
as either fixed values or a distribution of values. The latter allows for pa-
rameter uncertainty by using Monte-Carlo simulation which deter-
mines the value of a parameter by repeat random sampling from a
triangular distribution defined by a plausible range entered by the
user [89,90].

Applications of EUFRAT

EUFRAT has been used in a number of reported studies to estimate
the TT risk for CHIKV, DENV, Coxiella burnetii and RRV (Table 2). In the
original description of the EUFRAT, the investigators retrospectively ap-
plied it to the 2001 CHIKVoutbreak in the Emilia-Romagna region in the
north-east of Italy [89]. The results demonstrated how the final estimat-
ed risk of transmitting infection to recipients can be substantially less
than the estimated risk of asymptomatic infection in blood donors. For
example, based on an estimated weekly donor prevalence of 1.07
CHIKV cases per 100 000 (95% CI, 0.38-2.03) donors at the outbreak
peak, the actual risk of severe infection in recipients was estimated as
0.0001 per 100 000 donations. While TT risk is typically expressed as
the risk of transmitting infection regardless of clinical outcome, this
was not specifically reported by the authors.

The EUFRAT has also been used in a non-outbreak area to estimate
the TT risk associated with donors returning from an outbreak area
[91] and has been extended to retrospectively estimate the TT risk dur-
ing an outbreak period AND the subsequent (future) risk associated
with donors who potentially remain infectious for some time following
the end of the outbreak [92].

BP and EUFRAT Models: From Population Incidence to
Donor Incidence

Both the BP and EUFRAT models are based on a number of assump-
tions which are summarized in Table 1. In particular, a number of these
assumptions are required to estimate the EID incidence in the eligible
donor population based on the incidence in the general population,
which is an important part of both models. Firstly, the diagnosis and
reporting of symptomatic infections in the general population repre-
sents all symptomatic cases. Secondly, published historic data estimat-
ing the ratio of asymptomatic/symptomatic infections is applicable to
the study population. This ratio is important as it allows the total inci-
dence (symptomatic and asymptomatic) in the general population to
be estimated from the incidence of reported symptomatic infections.
Thirdly, individuals with symptomatic infectionswould either not pres-
ent to donate or would be excluded from donating. In the BPmodel this
assumption is the basis for determining the period forwhich an infected



BP model

EUFRAT model

Step 1. Prevalence of infection 
in donor population. 
Parameters: 

Incidence in general  
population 

Proportion of 
asymptomatic infections 

Viraemic periods 

Proportion of unreported 
infections 

Step 2. Number of donations 
from infected donors 
Parameters: 

Prevalence of 
infection in donor 
population (step 1) 

Mean donation 
frequency 

Effectiveness of pre-
donation

questionnaire 

Step 3. Number of infectious 
donations released for 
processing 
Parameters: 

Effectiveness of 
pathogen reduction 
technology (PRT) 

Impact of blood 
processing 

Step 4. Risk of recipient 
becoming infected 
Parameters: 
1. Transfusion-

transmission efficiency 
2. Proportion of 

recipients who are 
immune 

Transfusion-
Transmission 

risk

Population incidence 
uncertain: lack of 
laboratory confirmation, 
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Fig. 2. ZIKV risk modeling parameters and sources of uncertainty.
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donor is at-risk of presenting to donate – the entire viraemic period for
donors who remain asymptomatic and the pre-symptomatic period for
thosewho do develop symptoms. Fourthly, blood donors have the same
risk of infection as the general population and therefore the incidence
of infection in the blood donor population is the same as that in the
general population.

Biggerstaff-Petersen and EUFRAT Models: Is It Valid to
Compare Outcomes?

In this section we discuss the validity of comparing outcomes from
the BP and EUFRATmodels, noting three important methodological dif-
ferences between the two models [68,69,89,90].

1. Additional risk components of EUFRAT

As already noted, both the BP and EUFRAT models estimate the risk
of asymptomatic infection in donors; however, the EUFRAT incor-
porates additional risk components: the risk of collecting an infectious
donation (steps 1 and 2), blood product-related risks (step 3), and
recipient-related risks (step 4).

2. EUFRAT excludes the risk from asymptomatic donors who sub-
sequently develop symptoms

The BPmodel and steps 1 and 2 of the EUFRAT are methodologically
most similar when the assumptions discussed below can be made. It is
worth noting that these assumptions are often applicable to EID
outbreaks.

Assuming that donors have the same risk of infection as the general
population and the period of infectiousness (D) is less than the period of
observation (T), step 1 of the EUFRAT can be expressed as

Pd ¼ Ip
NT 1−ρð Þ

� �
D

Where Pd is the prevalence of infectious donors, Ip is the number of
reported infections in the population, N is the size of the population
and ρ is the proportion of undetected infections.

If it is also assumed that the reporting system is 100% effective, ie, all
symptomatic cases are reported, ρ is effectively the proportion of
asymptomatic infections, (1 − ρ) is the proportion of detected (i.e.
symptomatic) donors and 1/(1 − ρ) is the ratio of total infections/
symptomatic infections. Further, Ip/N is the incidence of reported
(symptomatic) cases and D/T is the proportion of the observation
period that each donor is infectious (i.e. at risk of giving an infectious
donation). Therefore, the above equation can then be expressed as

Pd ¼ Ip
N

� ��
1= 1−ρð Þð Þ� D

T

� �

If it is further assumed that infection does not include a chronic phase
and that donor testing has not been implemented, then the prevalence of
asymptomatically infected donors (Pa), who would therefore not be
interdicted, is

Pa ¼ Pdð Þ� ρð Þ

For applications based on the above assumptions, the EUFRAT esti-
mate of “prevalence of infectious donors after screening and/or testing”
is in fact an estimate of the prevalence of asymptomatic infectious do-
nors who remain asymptomatic for the course of the infection. There-
fore, the EUFRAT model excludes the risk associated with
asymptomatic donors who subsequently develop symptoms (ie, the
pre-symptomatic infectious period). This represents a second difference
between the BP and EUFRAT models as the BP model incorporates the
risk associated with the pre-symptomatic infectious period. As a conse-
quence, the EUFRAT model could potentially underestimate the risk of
asymptomatic infections in donors – the higher the proportion of
asymptomatic infections that subsequently develop symptoms, the
greater the underestimation.



160 P. Kiely et al. / Transfusion Medicine Reviews 31 (2017) 154–164
3. Differences in parameter distributions

A third difference between the BP and EUFRATmodels relates to the
distributions of the input parameters which may potentially contribute
to output differences. As noted, the BP model uses Monte Carlo simula-
tion based on assumed distributions for the pre-symptomatic viraemic
period and the duration of the entire viraemic period. The EUFRAT
also uses Monte Carlo simulation and defines a triangular distribution
for input parameters whereby uncertainty in incidence and prevalence
estimates is accounted for by sampling from a beta distribution. This
would be expected to affect the uncertainty estimates but have a lesser
impact on the mean or median estimate of risk.

Due to these methodological differences, it would be expected that
evenwhen using the same data set, therewould be differences between
the risk estimates derived from the two models, although these differ-
ences will be minimized when the assumptions noted above can be
made. Direct comparison of TT risk estimates from the BP model and
EUFRAT have been reported for three EID outbreaks, either by different
investigators in separate studies or by the same investigators as part of a
single study. Using the samedata set and input parameters, bothmodels
have been applied to the 2007 CHIKV outbreak in Italy [85,89] and theQ
fever outbreak in the Netherlands in 2007–2009 [93] with very similar
risk estimates for each outbreak. A third study comparing the EUFRAT
and the BP model was performed for RRV in Australia, also using the
same data set and input parameters for both models [88]. Unlike the 2
previous examples, the RRV modeling showed what appeared to be a
substantial difference between the risk estimates of the EUFRAT and
BP models. For example, the EUFRAT estimate for risk of (asymptomat-
ic) infection in donors (ie, the risk of collecting a viraemic donation) in
the state of Western Australia for the 12-month period June 2013 to
May 2014 was 1 in 33, 481 (95% CI, 11 415-109 695) compared to the
BP model estimate of the risk of collecting a viraemic donation of 1 in
58 657 (uncertainty range, 17 320-232 208). This difference in the risk
estimatemay be due tomethodological differences between themodels
noted above. The BPmodelingwas performed usingmost plausible (with
lower and upper) point estimates for viraemic periods and asymptomat-
ic/symptomatic infection ratio while the EUFRAT model estimates were
based on assumed distributions for these parameters. Additionally, unlike
the BP model, EUFRAT does not take into account the pre-symptomatic
viraemic period for the proportion of infections that develop clinical
symptoms. However, it should be noted that the most plausible estimate
of the BPmodelwaswithin the 95% CI for the EUFRAT estimate indicating
the risk estimates were not significantly different.

Zika Virus: A Blood Safety Perspective

Zika Virus as a Global Public Health Concern

ZIKV is the latest EID agent to be recognized as a potential global
health threat [43,94], driven by the unprecedented and ongoing out-
break in the Americas and evidence that ZIKV is a causative agent of a
number of neurological disorders, including microcephaly in newborns
[95,96]. In February 2016, these concerns culminated in the WHO de-
claring that the ZIKV outbreak in Brazil constituted a Public Health
Emergency of International Concern [97].

ZIKV is a mosquito-borne flavivirus, first isolated in 1947 from a
Rhesus monkey in the Zika forest in Uganda and first isolated from a
human in Nigeria in 1954 [43,98,99]. Until the ZIKV outbreak on Yap Is-
land in 2007, nomajor outbreaks had been reported [43,100]. However,
a number of ZIKVoutbreaks since 2007have dramatically demonstrated
the outbreak potential of the virus. The first reported outbreak occurred
on Yap Island in 2007 with an estimated 5000 cases [43,101-103],
followed by an outbreak in French Polynesia in May 2013 with an esti-
mated 30 000 cases byMay2014 and subsequent spread to theWestern
Pacific region during 2014–15 [43,99,103-113]. In early 2015 a ZIKV
outbreak was reported in the Americas which remains ongoing and
has become the largest ever reported outbreak. As at 14 November
2016, there were 46 countries (excluding the US mainland) in the
Americas that had reported active ZIKV transmission [106]. By 2
March, 2017 a total of 548 690 suspected and 205 013 confirmed ZIKV
cases had been reported by the Pan American Health Organization in
the Americas [114] and 221 cases of locally acquired ZIKV had been re-
ported on the US mainland [115]. In these recent outbreaks outside of
Africa, transmission is believed to be primarily a human-mosquito-
human cyclewithA. aegypti as theprimarymosquito vector [116]. How-
ever, non-vector-bornemodes of transmission have been reported: sex-
ual [117-133] including male to male [134] and female to male [135],
perinatal and intrauterine [136-144], breast feeding [136,144,145] and
blood transfusion [43,146-149].

Why ZIKV Represents a Potential Threat to Blood Safety

The ongoing outbreak of ZIKV in the Americas has raised concerns
about the potential risk to blood safety [147,150-155]. Firstly, as noted
above, ZIKV has demonstrated an ability to establish infection in
humans and spread within human populations. Secondly, an estimated
80% of ZIKV infections do not develop symptoms and symptomatic in-
fection includes a pre-symptomatic viraemic period [102,105,156-
160], although the viraemic period appears to be typically brief with rel-
atively low levels of virus [102,105,161,162]. In addition, ZIKV RNA has
been detected in asymptomatic blood donors during outbreaks in
French Polynesian (2013–14) [105,163], Puerto Rico (April 3–June 11,
2016) [164], Martinique (January to June 2016) [165] and the continen-
tal US (May to October, 2016) [166]. Thirdly, there is a general consen-
sus that ZIKV is the causative agent of severe neurological disorders
[43,167-171] including microcephaly in newborns [95,96,172-175]
and Guillain-Barré syndrome (GBS) in the wider population [109,176-
179]. Fourthly, there is evidence that ZIKV is transfusion-transmissible
as at least four probable TT cases have now been reported, all from
Brazil during the current outbreak. [148,149,155,180,181] Therefore,
there is now sufficient evidence that ZIKV is a transfusion-
transmissible EID agent, similar to the phylogenetically related DENV
[56,182-190] and WNV [72-75,77,191,192].

However, accurately modeling the TT risk of ZIKV is currently prob-
lematic, due to the uncertainty associated with the required input pa-
rameters, and to our knowledge ZIKV TT risk modeling has not been
published to date. In Fig. 2 we have summarized the basis for this pa-
rameter uncertainty. Nonetheless, in response to the growing evidence
that ZIKV represents a threat to blood safety, a number of jurisdictions
have implemented risk mitigation strategies as a precautionary or pre-
emptive approach, even though this risk has not been estimated by for-
mal modeling. For example, following the US Food and Drug
Administration's (FDA) approval of the use of two investigational
blood donor screening assays for ZIKV nucleic acid testing (NAT)
under an investigational newdrug application (IND) [193,194], it subse-
quently issued a guidance for industry recommending the implementa-
tion of either universal screening of all donations in the US for ZIKV by
individual donation (ID)-NAT or pathogen reduction technology for
platelets and plasma [195]. It has been noted that this guidance was is-
suedwithout a formal risk assessment and without stakeholder consul-
tation [152].

Although the ZIKV outbreak in the Americas is now declining, the
viruswill remain endemic inmany countries where it had not previous-
ly been reported and future epidemic outbreaks cannot be excluded.
Therefore, further research is required to improve our understanding
of ZIKV epidemiology and virology which in turn will provide the
basis for reliable TT risk modeling.

Conclusion

If the expert consensus is correct then EID outbreaks will continue to
occur during the course of the 21st century and pose an ongoing
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challenge for those with responsibility for maintaining the safety of the
blood supply. So that health authorities are able to anticipate and respond
quickly to EID outbreaks and potential threats to blood safety, intense on-
going surveillance, epidemiologicalmodeling and risk assessments are es-
sential.Modeling the TT risk of EID agents can be an important part of risk
assessments, informing decisions regarding when risk mitigation strate-
gies should be implemented and which strategies are the most appropri-
ate. In this review we have described the methodological principles of
two publishedmodels for estimating the TT risk of EID agents. An under-
standing of the methodology that underpins these models will assist in-
vestigators in applying them to specific EID outbreaks and interpreting
the uncertainty associated with risk estimates.
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Table 1
Assumptions and limitations of the Biggerstaff-Petersen and EUFRAT models

Assumptions common to both models Additional assumptions for
the BP model

Additional assumptions for EUFRAT

Assumptions related to
reported case numbers

• Reported incident infections
represent all symptomatic
infections.

• Symptom onset dates for
reported (symptomatic)
cases are similar to
asymptomatic infections.

Assumptions related to blood
donor characteristics

• Donation frequency is constant
throughout the period of observation

• Donors have the same risk of
infection as the general population.

• All donors have the same risk of
infection, which is constant,
during the period of observation.

• Blood components from viremic
blood donors transmit infection
with 100% efficiency.

• Asymptomatic infection does not
affect the donation behavior of donors.

• Donors with symptomatic infections
either would not present to donate or
would be excluded from donating.

• Likelihood of detection of infectious
donors by the predonation questionnaire
is constant throughout the infectious period.

Assumptions related to infection • Historically estimated asymptomatic/
symptomatic infection ratio and
viremic periods are applicable to
the study population and remain
constant during period of observation.

• Risk from traveling donors is
based on the duration of visit to
outbreak/endemic area and time
from departure to donating.

• Relative timing and duration of
viremia are independent of symptom onset time.

• Traveling donors have the same
risk of infection as local inhabitants
in outbreak/endemic area.

• Duration of viremia is the same for
both symptomatic and asymptomatic cases.

• The proportion of donors that
develop chronic infections is
constant during period of observation.

Limitations • Input parameters required for
both models are often not well
defined and contribute to the
inherent uncertainty of the models.

• To perform the statistical
resampling in the BP model,
the dates of symptom onset
for reported incident
cases are required.

• A number of parameters in the
EUFRAT model, including the difference
in risk of infection between donors and
the general population, the proportion of
symptomatic cases in the general
population that do not seek health
care or are misdiagnosed, and the TT
efficiency of infected end products and
the level of immunity in the general
population, are typically unknown for
EID agents.

• The BP model does not take
into account the reduction in
TT risk related to efficiency of
transmission by transfusion,
pathogen reduction/inactivation
due to blood processing and
storage, and recipient immunity.
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Table 3
Applications of the EUFRAT model

Pathogen Country (date of outbreak) Comments Reference

Chikungunya virus (CHIKV) Italy (2007)

Applied both Biggerstaff-Petersen and EUFRAT
models and calculations were performed:

[89]
• Using both weekly and average cumulative
notified cases
• Using fixed input data and variable distribution
values; estimated risk of asymptomatic viremic
infection in donors was very similar by both methods.

Dengue virus (DENV)
Dutch donors returning form
Suriname and Dutch Caribbean (2011-11)

Estimated the risk of traveling donors:
[91]• Becoming infected while in outbreak area

• Transmitting infection to recipients upon return

Chikungunya virus (CHIKV), Coxiella burnetti (Q fever) Italy (2007), Netherlands (2007-09)
Extension of EUFRAT. Modeled risk of infection:

[92]• Prior to time of observation
• Potential risk subsequent to time of observation

C burnetti (Q fever) Netherlands (2007-09)

• Risk modeling for an infection with acute and
chronic phases

[93]
• Compared probability of donor being infected as
estimated by EUFRAT and Biggerstaff-Petersen models

Ross River virus (RRV) Australia (2013-14)
• Applied both EUFRAT and Biggerstaff-Petersen models

[88]
• Demonstrated temporal and geographical variations in risk.

Table 2
Applications of the Biggerstaff-Petersen model for estimating transfusion-transmission risk

Pathogen Country
(date of outbreak)

Formula/resamplinga Comments Reference

Chikungunya virus (CHIKV) La Reunion Island
(2005-2007)

Formula • Proportion of asymptomatic infections
based on local seroprevalence data

[83]

• Estimate of symptomatic cases accounts
for cases who did not consult a GP.
• Risk estimates did not take into account
uncertainty of key parameters.
• Estimates of CHIKV viremic periods based on DENV
• Incidence based on clinical definition which
may be an overestimate due to misdiagnosis of
cases not due to CHIKV

Dengue virus (DENV) Australia (2004) Formula • Risk modeling used to monitor changes in risk over time [82]
Dengue virus (DENV) Australia (2008-2009) Formula • Mean donation frequency used to estimate

number of infectious donations
[57]

• Estimated proportion of asymptomatic infections
based on the seroprevalence data in outbreak area
• Assumed donors who became symptomatic within a
few days after donating would notify the blood
service, and donation would be discarded

Chikungunya virus (CHIKV) Italy (2007) Resampling • Risk contribution for donors in the 2-d presymptomatic
period was regarded as negligible and therefore
excluded from modeling

[85]

Hepatitis A virus (HAV) Latvia (2008) Formula • Model incorporated seroprevalence (immunity level) in
general Latvian population

[86]

• Modeling restricted to individuals over 18 y (blood donor eligibility)
• Accounted for ALT testing of donors and deferral if levels are high (N90 IU/L)
• Did not take into account exclusion of donors who have a
history of contact with HAV-infected individuals

Chikungunya virus (CHIKV) Thailand (2009) Formula • Modeled risk estimate of asymptomatic viremic
donors was higher than indicated by donor screening.

[84]

Ross River virus (RRV) Australia (2004) Formula • Duration of RRV viremia in humans based on mouse model [87]
Ross River virus (RRV) Australia (2013-14) Formula • Demonstrated changing risk levels geographically and over time [88]

• Duration of RRV viremia in humans based on mouse model

a Refer to text for details.
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