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bstract

Blood products are issued from blood collection. Collected blood is immediately mixed with anticoagulant solutions that immediately induce
hemical and/or biochemical modifications. Collected blood is then transformed into different blood products according to various steps of
abrication. All these steps induce either reversible or irreversible “preparation-related” lesions that combine with “storage-related” lesions. This
hort paper aims to provide an overview of the alterations that are induced by the “non-physiological” processes used to prepare blood products
hat are used in clinical practice.

2018 Elsevier Masson SAS. All rights reserved.
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ésumé

Les produits sanguins labiles sont préparés à partir de don de sang. Celui-ci est collecté et immédiatement additionné de solutions anticoagulantes
ui induisent les premières modifications chimiques et biologiques du sang prélevé. Une cascade de « lésions » est alors induite par l’ensemble
es processus de fabrication des produits sanguins qui s’additionnent aux lésions de stockage qui s’accumulent durant la conservation de ceux-ci.
ette revue présente certaines modifications chimiques, biochimiques ou morphologiques qui résultent des conditions non physiologiques qui sont

tilisées en routine pour « fabriquer » et « conserver » les produits sanguins labiles utilisés en pratique clinique.

2018 Elsevier Masson SAS. Tous droits réservés.
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p
. Introduction
The ex vivo treatment of blood for transfusion is not trivial and
he obtained labile blood products are impacted at all steps of the
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rocesses, from the donor to the patient. Obviously, the best product will
e a fresh one without any preparation fulfilling all the requirements in
erms of quality and safety. Biological qualification of all blood dona-
ions needs time implying that blood has to be stored until results are
btained. Furthermore, the blood needs to be transformed and sepa-
ated in its different components because of logistical issues and blood

ells particularities. Therefore, several strategies have been developed
o store as appropriately as possible the blood components and to secure
ransfusion. It includes the addition of anticoagulants, centrifugations,
ltrations and the separation of blood components, which are placed
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n various additive solutions. Finally, blood products may be treated
sing pathogen inactivation technologies or novel storage strategies to
mprove the quality of the blood products.

In the last two decades, an effort was put on the characterization of
lood products using omic sciences in addition of continuous develop-
ent in microscopy and cytometry analyses. The results hence obtained

ave deeply explored the content of blood cells and blood bags, and have
reatly improved our understanding of ex vivo aging [1–4]. Beyond
he acquired knowledge, they open the question of the qualification of
lood products and the markers that should be used for the product
pecifications.

The present review will therefore present recent data on the effect of
rocessing and storage on red blood cell concentrates (RCCs), platelet
oncentrates (PCs) and plasma. The focus is on in vitro data and the
linical data will not be specifically reviewed here.

. Red blood cells

Red blood cell (RBC) lesions start when the blood is withdrawn
rom a donor. Then each following step to the patient will contribute to
he storage lesions [5,6]. The ex vivo behavior of RBCs is influenced
y the donor, the processing, the addition of an additive solution, and
he cold storage in a permeable plastic. All of these steps change the

etabolism, the protein content and function, and the morphology in
cascade of events [7–9]. Even if the donors’ characteristics will not
e treated here, donors have also an impact on the storage of RCCs
10–15].

The analyses of metabolites (where the achievement has exploded
ith the introduction of metabolomics during the last decade) [4] have

hown a decrease in glycolysis and oxidative pentose phosphate path-
ay (PPP) rate, a decrease in energy metabolites, rewiring between

he non-oxidative PPP and the glycolysis and accumulation of purine
nd products at the end of the storage. These rerouting in differ-
nt metabolism pathways can be classified in three distinct zones as
bserved in statistical analyses of metabolomic data [16,17]. Hence, 8
xtracellular metabolites able to discriminate the age of RCCs in three
ifferent phases were identified [18]. One of these purine end-product
etabolites is the hypoxanthine that accumulates in RBCs as well as

n the supernatant of RCCs. In case of transfusion of long-term stored
CCs, oxidation of circulating hypoxanthine by circulating xanthine
xidase will increase reactive oxygen species (ROS) that may initiate
nflammation reactions [19]. Of interest, D’Alessandro and colleagues
eported a negative correlation between the intracellular level of hypox-
nthine and the post transfusion recovery in mouse and human (even
hough the data on human were less significant and required further
nvestigations) [20]. In the same study, the authors also demonstrated
hat the level of hypoxanthine is decreased by hypoxia both in vivo (in
olunteers exposed to high altitude) and in vitro (in RCCs stored at
ifferent levels of O2 saturation). All these researches confirmed the
itrate metabolism (remnant of the TCA cycle), the influence of oxygen
ontent and the influence of the composition of additive solutions. As
or the use of additive solutions, where the composition and pH affect
he metabolism, the action of diluting plasma triggers the excretion of
rate during the first 7 to 10 days of storage that changes the antioxidant
evel of RCCs and that might affect in turn the RBC metabolism [10].

Because of the enzymatic regulation of several reactions in RBCs,
rotein functions are also impaired. For instance, phosphorylation activ-

ty, that requires ATP, is known to regulate glycolytic enzymes binding
he band 3 [21,22]. Moreover, we have reported that the capacity of

embrane protein phosphorylation is lost during the storage [23].
ithin these regulations linked to band 3 complexes, the oxidation of
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APDH modulates the metabolism from glycolysis to PPP [24]. After
-4 weeks of storage different types of oxidative damages are observed
n proteins such as cysteine oxidation or protein carbonylation [25–29].
rotein complex reorganizations and migration were also detected such
s the TALDO/SOD complex [30], the association of flottilin-2 to band
complexes [31], or the accumulation of peroxiredoxin II at the mem-
rane [32]. On the contrary, another study on �-irradiated or pathogen
nactivated RCCs did not observe this accumulation of peroxiredoxin
I [33].

At a higher cell level, morphology is also affected with a significant
ffect during the last two weeks of storage. The percentage of disco-
ytes (or other reversible cell morphology) decreases and spherocytes
re formed [9,34,35]. The formation of small RBCs were also recently
eported after 28 days of storage [35]. All these modifications that reach
ore than 10% of the cell population decreases the transfusion efficacy

ecause these types of RBCs are rapidly removed from the circulation
nce transfused (of note a surface loss of more than 18% is sufficient
o trigger the elimination by the macrophages [36]). The cell deforma-
ility that is of primary importance to cross the capillaries is reduced
fter 3 weeks of storage [35] and spherocytes are known to have lower
embrane fluctuations than discocytes [9]. All the cellular parameters

re currently under investigation using different approaches of flow
ytometry, fluorescence exclusion, quantitative phase microscopy or
ther microchannel-based analyses [9,35,37–40].

Finally, all these lesions end up with the formation of microvesi-
les [41] that accumulate in the supernatant [9,42,43]. These small
articles can be generated by different ways (protein oxidation or phos-
horylation like in thalassemic RBCs, or calcium stimuli) and contain
different proteome [27,44,45]. These microvesicles have procoagu-

ant properties and might contribute to inflammation in some patients
46–49].

Different strategies have been employed or investigated to tackle the
torage lesions or to reduce their formation such as rejuvenation pro-
edures [50–52]. One of the solutions is the storage under anaerobic
ondition that improves energy metabolism and decreases the hemol-
sis [53,54]. Recent investigations also showed that this storage better
reserves the mechanical properties of RBCs and decreases the number
f plugging events in microchannels [55]. Moreover, a moderate reduc-
ion of oxygen content (below 20% of O2 saturation on hemoglobin)
ncreases the levels of both ATP and 2,3-DPG compared to standard
torage [56].

. Platelets

Platelet concentrates can be prepared in several manners. For ins-
ance, PCs can be either directly collected from a donor using an
pheresis procedure or prepared by pooling buffy coats with an addi-
ive solution. Pooling of buffy coats can be done manually or with
utomated centrifuge separators. Several additive solutions can be
sed to replace part of the plasma content. Furthermore, PCs can
e treated for pathogen reduction with the InterceptTM (Cerus, Con-
ord, USA), Mirasol

®
(Terumo BCT, Lakewood, USA) or Theraflex

MacoPharma, Tourcoing, France) technologies in order to secure the
roduct from bacterial contamination and/or emerging pathogens. Con-
entional platelets are stored at room temperature under agitation but,
ecently, we observe a regain of interest for the storage of platelets in
old conditions or for the cryoconservation [57]. The choice of the pro-
essing workflow is guided by the European and national guidelines

nd obviously by the production costs. Consequently, a large diversity
f practices exists among the blood centers. Nevertheless, some tenden-
ies appear to qualify the storage lesions and will be shortly reviewed
ere.
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Similarly to RCCs, platelets are affected as soon as they are in an ex
ivo environment and the extent of these lesions are both related to the
onor characteristics and to way the blood component is processed and
tored. The first easily observable process-related lesion occurs dur-
ng the collection of apheresis PCs when aggregates are present in the
roducts. Platelet activation during the procedure leads to the forma-
ion of aggregates and is highly dependent on the donor itself and on
tress engendered by the procedure. These aggregates are reversible and
ill in general be dissolved within two hours under standard agitation.
urther platelet lesions will then develop during the course of storage.
o far, the quality of ex vivo platelets has been explored using visual

nspection (presence of aggregates, swirling score), in vitro assays
aggregometry, flow cytometry, clinical chemistry) and more recently
ith metabolomics[4], transcriptomics [58,59] or proteomics [60].

Lesions in platelets stored under agitation at room temperature
ave been extensively reviewed [59,61–63]. Throughout the storage,
latelets experience a functional decline highlighted by an increase of
ctivation markers, morphological changes, mitochondrial dysfunction,
oss of GPIb� and �-granule secretion, and a decrease of collagen and
hrombin activated (COAT) platelets [61,64]. Release of immunomod-
latory cytokine, chemokines and associated molecules known to be
iological response modifiers has been reported in stored PCs [65]. In
pposition to the linear decay of metabolism reported by in vitro func-
ional assays, metabolomics approaches suggested the expression of
iscrete metabolic phenotypes during storage [66] and that metabolites
resent in stored PCs may be associated with platelet recoveries and
urvivals [67].

Pathogen reduction technologies tend to accelerate the appari-
ion and extent of these lesions [63]. Intercept-treated platelets
how metabolic changes, impaired mitochondrial function, acceler-
ted passive activation, and altered agonist-induced platelet aggregation
68–74]. The risk of increased storage lesion rates following Intercept
s higher for apheresis PC, especially when platelet contents are higher
han 5 × 10e11 [75]. Whereas marginal global proteome alteration were
eported following pathogen reduction treatments, Intercept seems to
ffect proteins involved in platelets activation an aggregation path-
ays [76]. Because these technologies rely on a photochemical action,

eactive oxygen species are generated and consequently, a decrease of
ntioxidant power is observed in pathogen-reduced PCs [77]. Oxidative
amages are also detected on peptides suggesting probable oxidation
t the protein level [78]. In addition, using metabolomics we showed
xidative damages in stored Intercept-treated platelets compared to
ontrols, in particular alteration of the purine and the glutathione
etabolism and diminution of antioxidant defenses such as the conver-

ion of urate to allantoin, only possible in humans under the action of
eactive oxygen species [79–81].

Similarly, Mirasol-treated platelets stored at room temperature
xhibit an increased expression of activation markers, higher lac-
ate production and increased glucose and oxygen consumption, as
ell as lower ATP over storage time [69,82–96]. The ultraviolet

ight alone has been shown to contribute significantly to the lesions
bserved upon Riboflavin/UVB treatment [81]. The Mirasol treat-
ent leads to hyper reactive platelets resulting in a reduction in the

egranulation capacity upon stimulation [97]. Proteomics studies reveal
hat Mirasol impacts few proteins that are mostly related to actin
olymerization, cytoskeleton organization and platelet shape change
76,98].

The Theraflex technology relies on a UVC illumination alone that

as been shown to disrupt platelet surface disulphide bonds and activate
he platelet integrin �IIb�3 [99]. Efficient mixing of PCs during UVC
reatment is essential to ensure homogeneous illumination of the blood
omponents and improve bacterial inactivation. The enhanced agita-
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ion speed does not affect quality variables [100]. Activation markers
nd exposure of phosphatidyl serine as well as metabolic activity are
ncreased in Theraflex-treated units. This treatment attenuates throm-
us formation kinetics in vitro in microfluidic flow chambers, especially
fter storage [101].

A molecular model is emerging for explaining the quality decline
f Intercept and Mirasol-treated platelet concentrates [63]. P38MAPK
inase is one of the central players in the signaling cascade that reg-
lates the degranulation, mitochondria release, expression of surface
lycoproteins, levels of mRNA expression, microvesicule release and
evelopment of apoptosis [63]. Further investigations are required to
ully characterize the key role of this regulator in platelets. Moreover,
urther investigations are required to better understand the oxidative
amages occurring in PCs treated for pathogen reduction [80]. The
linical efficacy of pathogen-inactivated platelets stored has been ques-
ioned as some reduction in post-transfusion recovery and survival
n vivo was suggested [102]. A recent Cochrane systematic review
ncluding 12 completed trials with either the Intercept or Mirasol
echnologies reported that, in people with haematologic or oncologic
isorders, there is high quality evidence that pathogen-reduced platelet
ransfusions increase the risk of platelet refractoriness and the platelet
equirement. Moreover, they found moderate-quality evidence that
athogen-reduced platelet transfusions do not affect all-cause mortal-
ty, the risk of clinically significant or severe bleeding, or the risk of a
erious adverse event [103]. Clinical data with the Theraflex technol-
gy are not yet available as the Phase III CAPTURE trial is ongoing
102,103].

Cold-stored platelets are conserved in refrigerator (2–6 ◦C) without
gitation. This technique of conservation was abandoned in the 1970s
ecause recirculation time of refrigerated platelets was dramatically
educed compared to platelets stored at room temperature. During stor-
ge, the Integrin GPIIbIIIa undergoes conformational changes to its
ctivated form, an increase of expression of P-selectin and external-
zation of phosphtidyl serine as well as an irreversible morphological
hange are observed in refrigerated platelets [57]. Desialysation and
lustering of the glycoprotein GPIb� lead to the exposure of N-
cetylglucosamine (GlcNAc) and galactose. Recognition of exposed
lcNAc by the �M�2 integrin on macrophages in the liver results

n the rapid removal of platelets from circulation [104]. Galactose
ecomes exposed as storage progresses, which facilitates platelet clear-
nce by hepatic Ashwell-Morell receptors [105]. However, refrigerated
latelets present other advantages such as a reduced metabolic rate that
llows the shelf life to be extended up to 21 days. Granule and cytokine
elease are decreased while microparticles are enhanced compared to
latelets stored at room temperature. Bacterial growth is inhibited
t cold storage therefore limiting the occurrence of transfusion-
ransmitted sepsis [57].

Cryopreserved platelets are stored at −80 ◦C after the addition of
MSO followed by prefreeze removal of supernatants. Of interest, cry-
preserved platelets can be stored up to 2 years. Before use, platelets
re thawed, resuspended in an adequate saline solution and rapidly
ransfused [106]. Cryopreserved platelets present a decrease of the gly-
oproteins GPIb�, GPVI and integrin �IIb� and they are more activated
nd less responsive to basal stimulation than conventional platelets
tored at room temperature [107,108]. Enhanced platelet degranulation
as also been observed [107]. Nevertheless, cryopreserved platelets are
aemostatically functional and are reported to be clinically efficient
109].
The pro-coagulant properties and extended shelf-life of cold-stored
nd cryopreserved platelets make them very attractive for a therapeutic
se to stop bleeding and in military operational settings, for instance
110].
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In a recent review, Waters et al. discussed the different platelet
rocessing and storage strategies (i. e refrigerated and cryoconserved
latelets) and how they may be combined, for example with pathogen
eduction techniques, to alleviate the problems associated with con-
entional platelet storage. This novel concept may permit to improve
he quality of the PCs and offer a panel of products that fits better the
linical needs [57].

. Plasma

Different types of plasma products available worldwide depends
n the collection, the time-to-freezing or the securisation procedure
quarantine, chemical or photochemical treatment), for instance. Fresh
rozen plasma (FFP) are frozen plasma in less than 8 h post-donation
nd frozen plasma 24 (FP24) in less than 24 h. All these plasmas can
e stored for several hours or days when thawed depending on require-
ents. Pathogen-reduced (PR) plasmas can be produced as S/D-plasma

y using detergent and solvent extractions, followed by filtration. It is
btained after the pooling of more than thousand units of FP24. PR-FFP
r PRI-FP24 are treated by a photochemical reaction using combina-
ion of riboflavin and UVB (Mirasol Pathogen Reduction Technology
ystem, Terumo BCT); of methylene blue and visible light (Thereaflex
B-plasma (MB), Macopharma) or of amatosalen and UVA (Intercept
lood system, Cerus) before freezing. Methylene blue induces vari-
us protein lesions that notably affect fibrinogen and fibrin generation
111,112]. Lyophilization (Lyo-plasma) or freeze-drying procedures
re also applied to produce a powder that is then reconstituted with
terile water. The Lyo-plasmas are derived from FFP, S/D-plasma or PR-
FP lyophilized by different techniques. The specifications for quality
ontrol are in general related to fibrinogen and factor VIII (that is a labile
actor and thus the most sensitive one for quality control), amongst oth-
rs parameters such as obviously the donor qualification, the volume,
nd the levels of cell contamination. In addition, several studies in the
iterature report data on factors and inhibitors of the coagulation, protein
rofiles, effect on the activated partial thromboplastine time (aPTT), the
rothrombin time (PT) and the thrombin generation.

FFP is the fewer affected plasma compared to other preparations
ecause of the short time-to-freezing. Factors are well preserved, in
articular the factor VIII [113–115]. As for FP24 where the time-
o-freezing is higher than 8 hours, factor VIII is decreased by around
0% whereas other factors are affected to a smaller extent [113,116].
nce thawed, the concentration of this factor is continuously decreas-

ng quickly reaching the lower level of specification of 0.7 UI/mL
115,117]. The best results were obtained when the plasma was rapidly
rozen [118].

The S/D treatment of plasma mainly affects the �2-antiplasmin and
he total protein S with a decrease of 60 to 80% and of 20 to 38%, respec-
ively [119]. Moreover, this type of plasma presents a pro-coagulant
henotype because of a reduced intact protein S level [119], as wells
s an increased thrombin generation compared to FFP [119,120]. Of
ote, the level of �2-antiplasmin was improved by using the detergent
riton X-45 instead of Triton X-100. [121]

Another strategy to inactivate pathogens is the use of photochemical
reatments. Mirasol technology well preserves the factors especially the
ensitive one compared to other technologies with activities remaining
round 96 to 100% compared to FFP [122]. MB induces a reduction of
pproximately 22–30% compared to FFP [114,115]. However, Osse-

aer et al. obtained slightly better results when using Intercept (20% of
eduction in factor VIII). In this case, the plasma was frozen in less than
h post-donation, which explains the highest factor VIII level obtained.

ndeed, this factor is already lower in FP24 than in FFP, therefore
e et Biologique 25 (2018) 269–275

educing the final level in PR-FP24 close to the threshold of 0.5 UI/mL
123]. This trend was also recently observed by Erickson et al. [124].
s for the other factors or inhibitors, they are also affected depending
n the time-to-process where the best results were obtained with the
reshest plasmas. Finally, a procoagulant phenotype was reported after
ntercept treatment based on thrombin generation [120,123], like the
/D-plasma.

Last but not least, the lyophilized plasma provides alternative strate-
ies to store plasma as powder especially in places where frozen storage
olutions are not available [125]. These types of plasma are derived from
FP, S/D or PR-plasma. By consequences, their in vitro qualities reflect

he in-coming product with low level of �2-antiplasmin for S/D-plasma
126], low level of factor VIII in PR-plasma [127], and a homogenous
mpact when using FFP [128]. The advantages of the lyophilized plas-

as are the availability and the short time of reconstitution lower than
0 minutes [125].

In summary, the more the plasma is processed, the worst the impact.
evertheless, all the available plasmas for transfusion (in general)

espect the specifications and the different factors and inhibitors fall
ithin the normal physiological ranges. Some of the preparations pro-
ide advantages such as levels of factors closest to the donor values,
he inactivation of pathogens (the issues being mainly on emergent
r unscreened pathogens) or the homogeneity in terms of volume and
rotein contents.

. Conclusions

The knowledge on blood products and particularly on stored
latelets and RBCs have been greatly improved in the last two decades.
ven if there is an increasing interest to develop new quality parameters,

t is still unclear what should be done in routine, because the risks related
o both preparation-related and storage-related lesions effects in trans-
used patients are not. Nevertheless, the comparison to the physiological
arameters can guide the decisions and advanced quality controls might
e considered such as metabolite markers or cell dynamic (both RBCs)
55] and platelets [129].
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